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a b s t r a c t

The differential model of turbulence, supplemented with the transport equation for turbulent heat flux, is
used to perform a numerical investigation of the boundary layer on a heat-insulated wall with suction in
a compressible gas flow. It is shown that the laminarization of the initially turbulent boundary layer
occurs under conditions of suction of gas, as is evidenced both by the behavior of integral and local char-
acteristics of the flow and heat transfer and by the degeneracy of turbulence when the suction becomes
asymptotic. In so doing, the temperature recovery factor is independent of Prandtl number and becomes
equal to unity, i.e., the temperature of the heat-insulated wall becomes equal to the stagnation temper-
ature of the outer flow.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The initial investigations of turbulent boundary layer by
numerical methods [1] revealed the efficiency of such approaches,
especially, in the case of complex boundary conditions. The use of
permeable surfaces in various devices is caused by the need for
heat shielding of the walls (by means of injection) or for control
of the boundary layer (by means of suction). One can judge the
urgency of the problem of heat shielding of the walls by the large
number of publications on the investigation of boundary layer
with injection (a fairly complete list of references to such publica-
tions is found in [2]). Many fewer studies are available on the
suction of boundary layer than those on injection. This is appar-
ently explained both by the complexity of setting up an experi-
ment (especially in the case of compressible boundary layer)
and by the limitations of computational models, which are inca-
pable of correctly describing rather complex processes occurring
in the case of suction, in particular, the laminarization of bound-
ary layer.

The influence of suction on an incompressible turbulent bound-
ary layer was studied earlier both numerically and experimentally
[5]; in particular, from a flow of incompressible fluid at constant
velocity u1 under conditions of uniform suction with intensity
F = vw/u1.

The three-parameter model of turbulence [3] was used in [4] for
performing calculations in the range of variation of suction param-
ll rights reserved.

.

eter F = 0–0.01. This range corresponds to the range of investiga-
tion in [5], with whose results the comparison was made in [4].

The calculations showed that the shear stress s and the en-
ergy of turbulence E in the presence of suction decreased over
the turbulent layer thickness in comparison to the case of
F = 0. It was found both in calculations [3] and in experiments
[5] that, in the case of suction, the deformation of the velocity
profile was nonmonotonic: for low values of the suction
parameter (F < 0.005), the velocity profiles became more con-
cave than in the case of impermeable plate; with further in-
crease in the suction parameter (F � 0.01), the velocity
profiles become more extended. This is an indication (obtained
for the first time in calculations) of laminarization of the
boundary layer, which is further evidenced by the significant
decrease in the values of shear stress s and of energy of tur-
bulence E. In so doing, the correlation between the friction
coefficient cf and the suction parameter has the form cf = 2F,
which corresponds to the laminar boundary layer with asymp-
totic suction [6].

No experimental data are available for compressible turbulent
boundary layer with suction. As to numerical investigations, we
are aware of only one study [7], where the algebraic model of tur-
bulence is used and rather limited information is obtained on the
recovery factor for a heat-insulated permeable plate with suction
of gas in the range of Prandtl number values Pr = 0.2–0.7.

It is the objective of this study to perform a numerical investi-
gation of a compressible boundary layer with suction on a heat-
insulated permeable plate in a wide range of values of suction
parameter and Prandtl number using the differential model of tur-
bulence [4,8,9].
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Nomenclature

bm = jw/St permeability parameter
cf friction coefficient
cp specific isobaric heat capacity
E energy of turbulence
e ¼

ffiffiffi
E
p

=u1 intensity of turbulence
h enthalpy
jw = (qv)w/(qu)1 intensity of suction
L integral scale of turbulence
M Mach number
Pr Prandtl number
q heat flux
Re Reynolds number
rT recovery factor for temperature
rh recovery factor for enthalpy

St Stanton number
T temperature
u,v projections of velocity vector on coordinates x and y

Greek symbols
d boundary layer thickness
g dynamic viscosity
q density
s shear stress

Subscripts
1 parameters of outer flow
w conditions on the wall
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2. Formulation of the problem

The flow and heat transfer in a compressible turbulent bound-
ary layer on a permeable plate are calculated using a system of
continuity, momentum and energy equation.

@qu
@x
þ @hqvi

@y
¼ 0;

q
d
dt
¼ qu

@

@x
þ hqvi @

@y
;

q
du
dt
¼ � dp

dx
þ @

@y
g
@u
@y
þ qs

� �
;

q
dh
dt
¼ u

dp
dx
þ @

@y
g
Pr

@h
@y
þ qqt

� �
þ g

@u
@y

� �2

þ qs @u
@y
:

In order to determine the turbulent friction qs = �qhu0v0i
appearing in the momentum equation, we use the three-parameter
model of turbulence [3] generalized to a flow with heat transfer in
[8], which includes transport equations for turbulent shear stress
s = �hu0v0i, energy of turbulence E ¼ 0:5

P
hu02i i, and parameter

x = E/L2. The latter has the physical meaning of vorticity of turbu-
lence and includes the transverse integral scale of turbulence L.
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Constants: c = 0.3; c1 = 5p/4; c4 = 0.4; c5 = 3c; c6 = 9c1; c7 = 0.2;
aE = ax = 0.06; as = aEc5/c; aE = as = 1; ax = 1.4; cE = 0.7.

This model is supplemented with the equation for turbulent
heat flux qT ¼ cphv 0T 0i [9] appearing in the energy equation.
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Here, f ðPrÞ ¼ 1þd
2

ffiffiffiffi
Pr
p
þ1=

ffiffiffiffi
Pr
p

1þd
ffiffiffiffi
Pr
p , Dq ¼ aqq

ffiffiffi
E
p

Lþ f ðPrÞg, d = 0.25, aq = as,

c10 ¼ c7=Pro
t , Pro

t ¼ 0:85.
The longitudinal pressure gradient dp/dx appearing in the

momentum equation is calculated in the general case by the distri-
bution of the Mach number along the wall. In the case at hand of
constant Mach number dp/dx = 0.
The boundary conditions on the wall (y = 0) in the case of suc-
tion of gas have the following forms:

u¼0; E¼@E
@y
¼s¼0; jw¼ðqvÞw; T¼Tw or k

@T
@y

� �
w

¼qw at y¼0:

Here, jw is the mass velocity of gas being sucked off, Tw is the
wall temperature, and qw is the heat flux to the wall. The boundary
condition oE/oy = 0 enables one to determine the quantity xw(x)
which is unknown. In the case of heat-insulated wall under consid-
eration, the wall temperature Tw was determined from the condi-
tion qw=0.

The boundary conditions on the external boundary of the
boundary layer (y = d(x)) in the case of suction have the following
forms:

u¼u1ðxÞ; T¼T1ðxÞ; E¼E1ðxÞ; x¼x1ðxÞs¼0 at y¼dðxÞ:

Here, u1(x) and T1(x) are functions which describe an outer flow,
and the functions E1(x) and x1(x) describe the degeneracy of turbu-
lence in this flow. The value of d(x) is selected from the condition of
smooth conjugation of the solution.

In the initial (x = 0) cross-section, the boundary layer was preas-
signed, in which the width of momentum loss h0 corresponded to
Reynolds number Reh = qu1h0/g � 10, with a laminar (according
to Blasius) velocity profile u/u1 and temperature ðT � T1Þ=
ðT�1 � T1Þ ¼ 1� ðu=u1Þ2; the profiles of functions E(y), s(y) and
x(y) were preassigned as in [10]. The intensity of turbulence of
the flow in the cross-section x = 0 was taken to be
e10j ¼

ffiffiffi
E
p

10=u1 ¼ 0:03.

3. Laminar boundary layer with asymptotic suction

As was mentioned in Section 1, the laminarization of the bound-
ary layer may occur due to suction of gas. In view of this, it appears
advisable to analyze the solution for a laminar boundary layer with
suction. It is known [6] that, at far distance from the point where
suction begins, the velocity and temperature profiles are indepen-
dent of current length x (asymptotic suction) and are described by
the laws of conservation of mass, momentum, and energy (for stag-
nation enthalpy, ho = h+0.5u2) in the form
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For a heat-insulated wall, the boundary conditions are on the
wall and outer

y ¼ 0 : u ¼ 0;
dho

dy
¼ 0; y!1 : u! u1; h0 ! ho

1: ð4Þ

Eq. (2) with account of boundary conditions (4) gives

jwðu� u1Þ ¼ g
du
dy
: ð5Þ

Integration of Eq. (3) gives
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Pr

du
dy

dho

du
þ ðPr� 1Þu
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At y = 0, it follows from Eq. (5) follows �jwu1 = (gou/oy)w and
from Eq. (6) �jwðhw � ho

1Þ ¼ qw ¼ �½ðg=PrÞð@h=@yÞ�w. Therefore, for
a heat-insulated wall (qw = 0), the enthalpy of gas on the wall hw

is equal to the stagnation enthalpy in the outer flow ho
1, and the

recovery factor for enthalpy is rh ¼ ðhw � h1Þ=ðho
1 � h1Þ ¼ 1 irre-

spectively of Prandtl number.
Let us consider the case where the viscosity of the gas depends

on temperature, and the Prandtl number is constant (Pr = const).
We transform the relation (6) using (5),

dho

du
þ ðPr� 1Þu ¼ �Pr

ho � ho
1

u1 � u
:

A solution to the resultant first-order linear equation for deter-
mining ho may be readily found. We make the substitution of the
variables H ¼ ho � ho0

1 and U = u1 � u. For determining H we derive
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H
U
: ð7Þ

The solution to Eq. (7) with boundary conditions (4) has the
form

ho
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At y = 0 (V = 1), we will have ho ¼ ho
1.

Note that the solution (8) at Pr – 2 coincides with that obtained
using Crocco variables and referred to in [11].

For completing the construction of solution, we must find the
dependence of the function V on the coordinate n. We will use
for this purpose Eq. (5) written in dimensionless form

go dV
dn
¼ �V ; go ¼ g

g1
; n ¼ � jwy

g1
ð9Þ

with the boundary condition V = 1 at n = 0.
The solution to Eq. (9) has the form

Z V

1

go

V
dV ¼ �n: ð10Þ

The temperature dependence of viscosity of gas must be preas-
signed to use the formula (10). As an example, we will consider the
power law go = (T/T1)n.

The temperature is calculated by the relation ho = cpT + 0.5u2:

T
T1
¼ 1þ r

c� 1
2

M2
1; M2

1 ¼
u2

1

cRT1
; c ¼ cp

cv
:

Here, cp and cv are the specific heat capacities of the gas at con-
stant pressure and constant volume, respectively.

The current recovery factor for temperature r is determined
using formulas (8) and (9),
r ¼ Vð2� VÞ � 2VPr

Pr� 2
þ 2

Pr� 1
Pr� 2

V2 � 2V ðPr–2Þ;

r ¼ Vð2� VÞ þ 2V2ð1� ln VÞ � 2V ðPr ¼ 2Þ:

The indefinite integral in Eq. (10) may be taken for any integer n.
For example, for n = 1, we substitute V by the formula V = 1 � w

(w = u/u1) to derive
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For Pr = 1, the resultant solution coincides with that given in [6].
For constant viscosity go = 1 (n = 0), Eq. (5) in view of boundary

conditions (4) may be integrated as

u ¼ u1ð1� e�nÞ: ð11Þ

This solution is given in [6].
After substitution of Eq. (11) into (6), we obtain the solution for

stagnation enthalpy ho. The solution of Eq. (6) is the sum of the
general solution of the homogeneous equation and the particular
solution of the inhomogeneous equation. The general solution of
homogeneous equation (6) is

ho ¼ Ce�Prn: ð12Þ

At Pr = 1 and Pr = 2, finding the general solution calls for special
consideration. Let Pr = 1. In this case, the velocity drops out from
the equation for determination of ho, and we derive the following
relation for ho:

ho ¼ ho
1 þ Ce�Prn:

It follows from the boundary condition at y = 0 that C = 0, and
the general solution is ho ¼ ho

1.
Let Pr – 1 and Pr – 2 (the case of Pr = 2 will be considered fur-

ther). We derive the following solution from Eq. (6) for ho:

ho
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Pr� 2
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For y = 0, we use the latter relation for stagnation enthalpy of
gas on the wall to find hw ¼ ho

1 which was shown above to be inde-
pendent of Prandtl number.

We consider in conclusion the case of Pr = 2. The solution of Eq.
(6) in this case is

ho

u2
1

¼ ho
1

u2
1

þ 1� jwy
g

� �
e�2n � e�n: ð14Þ

We assume y = 0 in the latter formula and again obtain hw ¼ ho
1

on the plate surface.
Assuming the constant specific isobaric heat capacity

(cp = const), one can use Eqs. (13) and (14) and derive expressions
for temperature profile of the form

H¼To�T1
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4. Integral relations of momentum and energy

For the boundary layer on a permeable wall in a compressible
gas flow at constant velocity u1 = const, the integral relations of
momentum and energy have the known form

d
dx

Z 1

o
quðu1 � uÞdy� jwu1 ¼ sw;

d
dx

Z 1

o
quðho � ho

1Þdy� jwðhw � ho
1Þ ¼ qw: ð16Þ
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Here, jw = (qv)w is the mass velocity of injection (suction)
through permeable wall, sw=(gou/oy)w is the wall friction,
qw ¼ ðk@T=@yÞw is the heat flux to the wall, ho is the stagnation en-
thalpy, and hw is the enthalpy of gas on the wall.

One can introduce the integral characteristics of a boundary
layer

h ¼
Z 1

o

qu
q1u1

1� u
u1

� �
dy;

hh ¼
Z 1

o

qu
q1u1

ho � h1

ho
1 � h1

� 1

 !
dy; ð17Þ

and write the relations (16) in the following form:

d
dx
ðq1u2

1hÞ � jwu1 ¼ sw;
d
dx
½q1u1ðho

1 � h1Þhh� � jwðhw � h1Þ ¼ qw:

ð18Þ

Note that integral relations (18) are valid for both laminar and
turbulent boundary layers. The difference is in definition of the
stagnation enthalpy ho which, as it follows from the equation of en-
ergy conservation, is ho = h + u2/2 + E for a turbulent boundary
layer, where E is the energy of turbulence.

It may be readily demonstrated that, in an outer flow, where the
value of stagnation enthalpy ho

1 is maintained constant, the static
(thermodynamic) enthalpy h1 (temperature T1) increases owing
to the dissipation of energy of turbulence E1 at constant velocity
u1. In the case of moderate values of Mach number and low value
of the initial intensity of turbulence e10 ¼

ffiffiffiffiffiffiffi
E10
p

=u1, the rise of tem-
perature T1 is insignificant. The maximal increase in temperature
T1 (with e1 decreasing to zero) gives a value DT ¼ T10e2

10

ðc� 1ÞM2; for M = 3, e10 = 0.03, and T10=100 K, this increase is
0.5 K.

If we ignore the variation of the temperature in an outer flow
for the turbulent mode of the flow, then we can assume (as for
the laminar mode of flow) the enthalpy h1 (temperature T1) of
the outer flow and, therefore, the density q1 to be constant, i.e.,
not changing along the flow. Then the integral relations (18) may
be written as

dh
dx
¼ jo

w þ
cf

2
;

dhh

dx
¼ jo

wðrh � 1Þ þ qo
w: ð19Þ

Here, jo
w ¼ jw=q1u1 is the intensity of injection (suction),

cf ¼ 2sw=q1u2
1 is the friction coefficient, rh ¼ ðhw � h1Þ=ðho

1 � h1Þ is
the recovery factor for the enthalpy, and qo

w ¼ qw=q1u1ðho
1 � h1Þ is

the dimensionless heat flux to the wall, which equals zero for
heat-insulated wall.

We can introduce the Reynolds number for h and hh and for
length x, respectively,

Reh ¼ h
qu
g

� �
1
; Reh ¼ hh

qu
g

� �
1
; Rex ¼ x

qu
g

� �
1
;

and write the integral relations (19) in the form
Fig. 1. Calculati
dReh

dRex
¼ jo

w þ
cf

2
;
dReh

dRex
¼ jo

wðrT � 1Þ: ð20Þ

Here, qo
w ¼ 0 and rT is the recovery factor for temperature, which

is equal to the recovery factor for enthalpy rh at constant specific
heat capacity, cp = const.

For a laminar boundary layer with asymptotic suction of incom-
pressible fluid (q = q1) at constant viscosity (g = g1) and heat
capacity (cp = const), one can use solutions for velocity profile
(11) and temperature (15) and derive the following dimensionless
dependences for the boundary layer integral characteristics (17):

Rehjo
w¼1=2: ð21Þ

Rehjo
w¼

6�5Pr�3Pr2þ2Pr3

3Prð1þPrÞð2�PrÞ ðPr–2Þ; Rehjo
w¼�

7
18
ðPr¼2Þ: ð22Þ
5. Calculation results

The calculations were performed in the following formulation
(Fig. 1). A plate was subjected to a gas flow at longitudinally con-
stant supersonic velocity u1 at temperature T1 = 100 K. The stagna-
tion temperature To

1 depends on the Mach number of an outer flow
M, which is a parameter of the problem, as well as the Prandtl
number Pr and Reynolds number with respect to length
Rex = x(qu/g)1, for values of the thermal properties determined by
the temperature of outer flow. The outer flow Mach number in cal-
culations was taken to be M = 3; in so doing, the stagnation tem-
perature was To

1 ¼ 400 K, and the Reynolds number beginning
from which the intensity of suction was constant along the perme-
able plate was Rex = 106.

The plate region of length x0 (Fig. 1) was assumed to be imper-
meable and heat-insulated (qw = 0). Further downstream, the gas
suction was performed, the intensity of which jo

w ¼ jw=ðquÞ1 was
linearly increasing over a short length Dx and then stayed constant
along the plate. The inlet region length x0 in calculations was se-
lected to be such that the beginning of suction was located behind
the region of transition from the laminar to turbulent mode of flow
in the boundary layer.

The gas in calculations was helium, the thermal properties of
which [12] are close to those of ideal gas: the specific isobaric heat
capacity is cp = const, and the dynamic viscosity g and thermal con-
ductivity k depend on temperature alone so that the Prandtl num-
ber is Pr ¼ gcp=k ¼ const.

The variation of the integral and local characteristics of the
boundary layer with respect to length (Reynolds number Rex)
was investigated for the aim to determine the extent of the region
in which the asymptotic solution of the equation for boundary
layer with suction is derived.

The investigation was performed for two values of Prandtl num-
ber Pr = 0.1 and 4.0 and for three values of intensity of suction
jo
w = �0.005, �0.01, �0.02. Fig. 2 gives the variation of 2jo

w=cf and
Fig. 3 – the variation of the recovery factor for temperature rT.
on scheme.



Fig. 2. Variation of the ratio between the suction intensity jo
w and the friction

coefficient cf =2 along the permeable plate for a number of values of jo
w: line 1,

jo
w ¼ �0:005; line 2, jo

w ¼ �0:01; line 3, jo
w ¼ �0:02; continuous lines, Prandtl

number Pr = 0.1; dashed lines, Pr = 4.

Fig. 3. Variation of the recovery factor for temperature rT along the permeable plate
for a number of values of suction intensity jo

w: line 1, jo
w ¼ �0:005; line 2,

jo
w ¼ �0:01; line 3, jo

w ¼ �0:02, for the values of Prandtl number Pr = 0.1 and 4.

Fig. 5. Variation of the product of Reynolds number Reh by suction intensity jo
w (for

the value of Prandtl number Pr = 0.1) along the permeable plate for a number of
values of suction intensity jo

w: line 1, jo
w ¼ �0:005; line 2, jo

w ¼ �0:01; line 3,
jo
w ¼ �0:02; line 10 , laminar boundary layer at jo

w ¼ �0:005.
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One can see that, starting with a certain distance from the begin-
ning of suction (Rex > 106), the friction coefficient cf/2 (Fig. 2) be-
comes close (within less than 1.5%) to the intensity of suction
�jo

w, and the recovery factor becomes (within less than 1%) rT = 1
(Fig. 3). Its means that, according to Eq. (20), the numbers Reh

and Reh at Rex < 107 become constant and do so faster as the suc-
tion intensity increases.
Fig. 4. The recovery factor for temperature rT as a function of permeability
parameter bM for a number of values of suction intensity jo

w (designations are the
same as in Fig. 3).
Fig. 4 gives the recovery factor for temperature rT as a function
of permeability parameter bm ¼ jo

w=StM (StM is the Stanton number
at M = 3), which illustrates the rate at which the asymptotic solu-
tion is reached with respect to parameter bm.

It follows from Eqs. (21) and (22) in the case of constant viscos-
ity that the products of Reynolds numbers Reh and Reh by the
intensity of suction jo

w are independent of the value of jo
w and are

constant for asymptotic boundary layer, Rehjo
w =-1/2, and Rehjo

w de-
pends on Prandtl number alone. Figs. 5 and 6 give the variation of
Rehjo

w as a function of Rex. One can see that Rehjo
w indeed assumes a

constant value (other than �1/2) and does so the faster, the higher
the intensity of suction, but much slower than in the case of initial
laminar boundary layer (lines 10 in Figs. 5 and 6).

The quantity Rehjo
w (Figs. 7 and 8) is slower than Rehjo

w in assum-
ing a constant value (especially, for a low value of Prandtl number
Pr) and differs from the quantities which correspond to constant
viscosity (22), i.e., Rehjo

w ¼ �8:727 for Pr = 0.1 and Rehjo
w ¼ �0:55

for Pr = 4.
The investigation of the behavior of local characteristics in the

case of suction revealed the following. The velocity profiles in
coordinates u/u1, n = �yjw/g1 (Fig. 9) are independent of the inten-
sity of suction (�jo

w ¼ 0:005� 0:02) and of Reynolds number
(Rex > 107); they differ only by the Prandtl number Pr (lines 1
and 2 in Fig. 9) and agree with the results of calculations for
the initial laminar boundary layer, which is indicative of asymp-
totic solution for the parameters identified above. The results fur-
ther differ from the solution for incompressible fluid of constant
Fig. 6. See Fig. 5 (for the value of Prandtl number Pr = 4).



Fig. 8. See Fig. 7 (for the value of Prandtl number Pr = 4).

Fig. 9. Profiles of velocity u/u1 in boundary layer with suction for the value of
Reynolds number Rex = 108: line 1, Pr = 0.1; line 2, Pr = 4; dashed lines indicate
solution (11) for incompressible fluid of constant viscosity at the values of Prandtl
number Pr = 0.1 and 4.0.

Fig. 7. Variation of the product of Reynolds number Reh by suction intensity jo
w (for

the value of Prandtl number Pr = 0.1) along the permeable plate for a number of
values of jo

w (designations are the same as in Fig. 5).
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viscosity (11) (dashed line in Fig. 9). Similar results were obtained
for temperature profiles in coordinates H ¼ ðTo � T1Þ=
ðTo

1 � T1Þ; n ¼ �yjw=g1 (Fig. 10).
The effect of suction on the profiles of velocity u/u1, tempera-

ture T/T1, and intensity of turbulence e ¼
ffiffiffi
E
p

=u1 over the bound-
ary layer thickness y/d is illustrated in Figs. 11–13. One can see
that a significant deformation of the profiles of velocity (Fig. 11)
and temperature (Fig. 12) occurs in the case of suction, and the
degeneracy of energy of turbulence (Fig. 13) is directly indicative
of laminarization of boundary layer under conditions of suction,
which is the necessary condition of deriving the asymptotic
solution.
Fig. 10. Profiles of temperature H ¼ ðTo � T1Þ=ðTo
1 � T1Þ in boundary layer with

suction for the value of Reynolds number Rex = 108: line 1, Pr = 0.1; line 2, Pr = 4;
dashed lines indicate solution (15) for incompressible fluid of constant viscosity at
the values of Prandtl number Pr = 0.1 and 4.0.

Fig. 11. The effect of suction on the profiles of velocity u/u1 over the boundary layer
thickness y/d for the value of Reynolds number Rex = 108: line 1, Pr = 0.1 and 4; lines
2 and 3, jo

w ¼ �0:01 at the values of Prandtl number Pr = 0.1 and 4, respectively.



Fig. 13. The effect of suction on the profiles of intensity of turbulence e ¼
ffiffiffi
E
p

=u1

over the boundary layer thickness y/d (designations are as in Fig. 11).

Fig. 12. The effect of suction on the profiles of temperature T/T1 over the boundary
layer thickness y/d (designations are as in Fig. 11).
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6. Conclusion

The numerical investigation of the boundary layer on a heat-
insulated wall with suction in a compressible gas flow involving
the use of differential model of turbulence supplemented with
transport equation for turbulent heat flux revealed the following:

1. The laminarization of the initial turbulent boundary layer
occurs under conditions of suction of gas, as is evidenced both
by the behavior of integral and local characteristics of flow
and heat transfer and by the degeneracy of turbulence when
the suction becomes asymptotic; the asymptotic suction is
characterized by constant value of mass transverse velocity
and by developed profiles of temperature and longitudinal
velocity.

2. The temperature recovery factor in the case of asymptotic suc-
tion is independent of Prandtl number and becomes equal to
unity, i.e., the temperature of the heat-insulated wall becomes
equal to the stagnation temperature of outer flow.
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